
Call: +44 345 222 1711 / +353 1 210 1711 Email: cyber@bsigroup.com Visit: bsigroup.com

A cost-effective IoT system simulation

for cyber-resilience testing

An examination of a real-life project

A whitepaper

2 IoT system simulation for cyber-resilience testing Call: +44 345 222 1711 / +353 1 210 1711 Email: cyber@bsigroup.com Visit: bsigroup.com

Introduction

This paper depicts the quick deployment of a fully scalable, multipurpose

model capable of simulating a wide range of control devices and smart meters,

keeping costs to a minimum. The use case presented in this paper is based

on an important and common IoT (Internet of Things) component: SCADA

(Supervisory Control and Data Acquisition), but it can be fully extended to an

entire IoT system.

The times when control and SCADA systems were isolated

are long gone. Actually, many authors have started to refer to

control systems as some kind of IoT system1.

The majority of organizations using IoT systems don’t test

their control devices. System administrators are reluctant to

test them in the production environment (due to the threat

to system availability) and the setup of a traditional testing

laboratory is something complex and expensive that usually

doesn’t fit in budget.

This paper describes the means to building a functional testing

environment that fills that gap. Instead of setting up an entire

expensive and complex structure, simulation is used in an

effective way, in order to accelerate the installation process

and cut down the costs dramatically.

Use cases for the simulation environment

The system described in this paper has two direct

1 http://internetofthingsagenda.techtarget.com/feature/Ten-tips-for-migrating-to-SCADA-systems-plus-IoT

applications for industrial manufacturing players.

• Performance testing - Real Control devices (PLCs, RTUs,

DCUs) and Smart Devices (smart meters, smart actuators,

instrumentation) can be connected to the simulated

environment and be operated exactly the same as in

production, which provides the control engineers the

capability of testing the configuration without impacting

the production environment, and measure different

aspects of the devices (accuracy, precision, repeatability)

before “going live”.

• Resilience testing - Once the devices have been configured

and tested for good behaviour under “normal conditions”,

penetration tests can be conducted, to gain information

on how the devices would react under “abnormal

circumstances” or even under a theoretical cyberattack.

This information is critical in order to build a resilient

architecture around them.

Project architecture

The project can be broken down into three major points:

1 The unique master station option was chosen to keep the project simple and clear. Nevertheless, the inclusion of a redundant master station is as simple as the inclusion of another pc hosting the
same software

• Master station - this represents the control station that

oversees all the controlled system, with the possibility of

acting in it whenever needed. For the project described in

this paper, only one master station is enabled1, although

it is common in real installations to have one additional,

redundant master station which would take over the

system in case the main one fails

• Slave control devices - representing control devices acting

as slaves, attending the requests of the master station.

This project used Raspberry Pi with a Linux O.S. in order

to simulate the slaves. The chosen architecture has three

slaves (two “physical” and one “virtual”, hosted in the same

computer that acts as the master station) but this number

can be easily escalated adding up more embedded devices.

• Communications - this project simulated Modbus

communications over TCP between the slaves and the

master station. Modbus communications are widely used in

control systems all over the world, making them a suitable

option for the project. Other control communication

protocols are considered for future expansions of the

project, as is shown overleaf.

3IoT system simulation for cyber-resilience testingCall: +44 345 222 1711 / +353 1 210 1711 Email: cyber@bsigroup.com Visit: bsigroup.com

Master station configuration

INDIGO SCADA1 is a free distribution SCADA software, useful for providing a quick and simple overview of a controlled

process.

The use of this software was particularly appropriate for this project, so the control load could be kept to the minimum,

focusing in the Modbus nodes configuration and visualization.

As can be seen in the figure overleaf, the project kept the control functions of INDIGO SCADA as simple as possible, it shows

five Boolean values and five integer values for each of the slaves, each of these values, representing inputs and outputs in

the controlled process2.

The process of configuring the INDIGO SCADA master station was conducted in three simple steps:

• Protocol configuration

• Unit configuration

• HMI configuration

1 http://www.enscada.com/a7khg9/IndigoSCADA.html

2 One Boolean input could be a valve with two possible states (open/close) or a pump (on/off). The integers on the other hand can represent process values (temperature, flow, liquid level) or actuators
with analogic values (degree of openness of a valve, frequency feeding an electric motor etc.)

4 IoT system simulation for cyber-resilience testing Call: +44 345 222 1711 / +353 1 210 1711 Email: cyber@bsigroup.com Visit: bsigroup.com

Protocol configuration

The process of protocol configuration consists of mapping the required inputs and outputs with their correspondent

parameters1. That is performed in the INDIGO SCADA via database files, which define the needed I/O, with all the required

parameters. The protocol configuration is shown in the following figure:

Device configuration

After the required inputs and outputs have been mapped during protocol configuration, the different Modbus slaves which

host them need to be identified as well by the master unit.

Unit configuration consists of selecting the drivers which will manage each of the Modbus slaves. These drivers need to

correlate to the communication protocol of the slave they will be using (Modbus over TCP in our case).

After the driver is selected, it needs to be configured, indicating the IP address of the slave, the communication port which
1 I/O parameters could be the memory addresses, data type, or Modbus functions authorized for each of them.

5IoT system simulation for cyber-resilience testingCall: +44 345 222 1711 / +353 1 210 1711 Email: cyber@bsigroup.com Visit: bsigroup.com

will be used, and the polling interval. The unit configuration is shown in the figures below:

6 IoT system simulation for cyber-resilience testing Call: +44 345 222 1711 / +353 1 210 1711 Email: cyber@bsigroup.com Visit: bsigroup.com

HMI configuration

Once the Protocol and the Modbus units are defined,

only the customization of the “front-end” HMI needs to be

developed.

INDIGO SCADA provides a user friendly HMI design

framework, with an extensive database of grahical objects

that can be used for representing the I/O of the different

Modbus slaves. The HMI control panel used for this project is

shown in the following figure:

Slave control devices

The simulation of the Modbus slaves is the core of the project.

Real control devices, such as PLCs or RTUs, have three

relevant characteristics which can be used to define them for

the purpose of this project:

• Physical resilience

• Operational stability: Devices need to operate constantly,

(24 hours, 7 days per week), and system crashes and

reboots have a high impact on the overall performance

• Hard real-time operation: Key requirement for process

control systems

The main challenge for the project was to find a device which

could operate in the same fashion, cutting down the costs

This project used multipurpose computer Raspberry Pi

hosting Linux O.S to simulate the Modbus slaves. The

treatment of the previously mentioned constraints was

conducted as follows:

• Physical resilience: This constraint is not really applicable,

as the project’s intended use is in a laboratory, where

the real devices and systems can be tested. Therefore,

Raspberry Pi is valid on that front.

• Operational stability: Using the Linux O.S, and avoiding

parallel processes running in the Raspberry Pi as much as

possible, achieved this constraint completely.

2 https://datasheets.maximintegrated.com/en/ds/DS3231.pdf

3 The architecture represented both approaches having one raspberry operating just with the software clock, and the other one with the real-time clock attached.

• Hard real-time operation: This constraint leads to the

weakest point when it comes to using Raspberry Pi.

Raspberry Pi does not include a physical clock, so the only

way of time measurement is using the software clock,

which is not precise enough to be considered real-time

.This issue was tackled using two approaches:

• For applications where hard real-time is not critical,

the precision of the ±150ppm may be enough.

• For time critical applications, the hardware real-

time clock DS32312 was

added to the Raspberry

Pi, achieving a precision

of ±2ppm3. The addition

and configuration of the

real-time clock is detailed

in Annex B.

Apart from using a

Raspberry Pi for Modbus

node simulation, the

project also developed a

virtual Modbus slave, in order to provide as many options as

possible.

The virtual Modbus node was simulated in Python, hosted on

the same computer as the SCADA master station. The Python

code and reference to Pymodbus (library used for Modbus

simulation) is described in annex D.

Modbus slave configuration

In line with the master configuration (in INDIGO SCADA),

Modbus slaves were kept as simple as possible.

The memory of each of the slaves was configured to host 4

different types of I/O:

• Digital input: Boolean data which can only be read

• Coils: Modbus denomination for digital output. Boolean

data which can be read and written

• Holding registers: Modbus denomination for analogue

output, which can be read and written

• Input registers: Modbus denomination for analogue input,

which can only be read

The slaves implemented in the project had all four types of

I/O, but in practice, only holding registers and coils are used.

Using those covers the Boolean and analogue I/O spectrum,

plus enabling the capability of writing and reading them.

Digital inputs and input registers would measure the same

7IoT system simulation for cyber-resilience testingCall: +44 345 222 1711 / +353 1 210 1711 Email: cyber@bsigroup.com Visit: bsigroup.com

type of data, but without the capability of acting on them

(meaning that the master would be able to see their values,

but not change them).

The quantity of the I/O in each of the slaves is limited to 5 of

each of the four types. The escalation on the number of I/O is

really simple and only limited by the device memory.4 The

code sample which enables the I/O in a Modbus slave can be

seen in the following figure:

Further information on the code used in the simulated control

devices can be found in Annex D.

Communications

As previously mentioned, this project chose Modbus as

the communication standard for the simulations due to its

extended use in industrial environments all over the world.

According to Modbus:

“Modbus Protocol is a messaging structure developed by

Modicon in 1979. It is used to establish master-slave/client-

server communication between intelligent devices. It is a de

facto standard, truly open and the most widely used network

4 The Raspberry Pis used in this project use SD memory cards, and even the smallest today would be enough to host hundreds of each I/O types.
5 Definition provided by Modbus organization. http://www.modbus.org
6 https://github.com/bashwork/pymodbus
7 Time performance related to Ethernet communications was outstanding, due to the simplicity of the model (three slaves and one master). For more information about Real-time capabilities refer to
Annex B

protocol in the industrial manufacturing environment. It has been

implemented by hundreds of vendors on thousands of different

devices to transfer discrete/analog I/O and register data between

control devices. It’s a lingua franca or common denominator

between different manufacturers. One report called it the “de

facto standard in multi-vendor integration”. Industry analysts

have reported over 7 million Modbus nodes in North America and

Europe alone.”5

Initially, the Modbus protocol was designed in its physical

layer to be conducted over serial cable. At present, LAN

communications are the main stream, with Ethernet as they

drive the adaptation of Modbus, which culminated with

Modbus TCP/IP (the one used in this paper).

The implementation of Modbus protocol was performed in

Python using Pymodbus library6. Further information on the

Python code can be found in Annex D.

One remarkable aspect about Pymodbus is that the library

actually generates real Modbus communications, making the

traffic generated in this project indistinguishable from any

real industrial Modbus communications. The only potential

difference could be the time performance of the network,

which is driven by time performance of the Raspberry Pi and

the Ethernet communications.7

8 IoT system simulation for cyber-resilience testing Call: +44 345 222 1711 / +353 1 210 1711 Email: cyber@bsigroup.com Visit: bsigroup.com

Future implementations

The project scope is not limited to Modbus communications; it was used first

due to its importance and wide use. Other Industrial protocols (DNP3, Profibus,

and IEC 608070) and even some complete IoT implementations (Wyiliodrin,

IBM Watson, AWS IoT) are considered for future extensions of this project, as is

shown in Annex A.

1 When simulating RTU based control systems for the power industry, the usual time constraints are soft. And a maximum delay of 13 seconds per day will be acceptable in many cases.

Annex A - Future implementation sources

This annex will expose different protocol implementations

which can be used in future extensions of this project. All

the tools considered here have an open license, keeping the

cost to a minimum. The last of the references depicts full

IoT implementations using the Raspberry Pi, listing the most

relevant IoT cloud platforms.

Modbus:

Language: Python 2.7

Library source: https://pypi.python.org/pypi/pymodbus

DNP3:

Language: C/C++ (Provided the Python bindings and Java

bindings)

Library source: https://github.com/automatak/dnp3

Profibus:

Language: Python 2.7

Library source: https://bues.ch/cms/automation/profibus.

html

S7 PLC compatible module (AWLsim)

Language: Python 2.7

Library source: https://bues.ch/cms/automation/pilc.html

IEC 60870-5-101 /104

Language: Python 2.7

Library source: https://github.com/invveritas/

PYIEC60870-104

IoT:

Cloud Platforms:

• Wyliodrin: https://www.wyliodrin.com/

• IBM Watson: https://www.ibm.com/internet-of-things/

platform/watson-iot-platform/

• AWS IoT: https://aws.amazon.com/iot-platform/

Annex B - Real time operation

As previously stated in this paper, Raspberry Pi does not

come with a hardware clock; it only uses the software

version.

The use of software has major implications for time

management:

• The device will be desynchronized when switched off

• The precision achieved by the device will be low

The first implication does not have a big impact on this

project. As it is only a simulation model and therefore not

used in production, its normal use will be for short periods

of simulation (from hours to days). This means that in most

cases, this will be acceptable to synchronize the devices

each time they are powered up.

However, the impact caused by the second implication

compromises the ability of the Raspberry Pi to operate

in real time. The average precision of the Raspberry Pi is

±150ppm. This means approximately a precision of ±13 s/

day. If the system to be simulated does not have hard real-

time requirements, even this level of precision could be

enough.1For continuous control system simulation, which

usually requires hard real time in all their operations, the

operation of the Raspberry Pi using only the software clock

is not acceptable. This project used the hardware clock

DS3231 to address this problem.

9IoT system simulation for cyber-resilience testingCall: +44 345 222 1711 / +353 1 210 1711 Email: cyber@bsigroup.com Visit: bsigroup.com

This clock is powered with a small battery (enough for years

of operation), which avoids the desynchronization problem

with the device when switching it off. The specified precision

of the clock is ± 2ppm (less than 0.2 seconds per day) which

is acceptable for most real-time control operations.

The clock is easily attached in the GPIO2 of the Raspberry Pi,

and the configuration needed for using it by the device is as

follows:

• Editing /boot/config.txt file:

• Including the following line: dtoverlay=i2c-rtc,ds3231

• Editing /lib/udev/hwclock-set file:

• Commenting the following lines:

• #if [-e /run/systemd/system] ; then

• # exit 0

• #fi

Having the Raspberry Pi time driven by DS3231 enables the

capability of limiting the maximum time each operation is

taking (stopping the process if it is taking more time than

established). Therefore, this approach effectively enables the

device operation in real-time.

Ethernet communications

In order to be able to consider the whole system ‘real-

time capable’, the communications need to fulfil the same

constraints as each of the devices (making the whole system

as fast as the slowest of its members).

The project uses Ethernet as the communication conduit.

Strictly speaking, it doesn’t guarantee real time operations.

For the simple architecture used in this project,3 though, the

traffic in the Modbus TCP network is light enough to provide

communications without significant delay.

This project’s architecture is designed to facilitate more

complex configuration with multiple slaves. For these cases,

the use of the time sensitive Ethernet is recommended.

Time sensitive Ethernet is currently under development by

an IEE task group,4 and its functionalities and characteristics

are detailed under the standard series ISO/IEC/IEEE 8802-3.5

2 GPIO: General Purpose Input Output. 20 Pins included in the Raspberry Pi for general purpose functions.

3 One Master station communicating with three slaves.

4 http://www.ieee802.org/1/pages/tsn.html

5 http://shop.bsigroup.com/ProductDetail?pid=000000000030319189

6 https://www.bsigroup.com/en-GB/our-services/Cybersecurity-Information-Resilience/Resources/Whitepapers/

7 http://www.enscada.com/a7khg9/IndigoSCADA.html

8 https://github.com/bashwork/pymodbus

9 https://pymodbus.readthedocs.io/en/latest/

For further information about time sensitive Ethernet, please

refer to the following BSI white paper, which provides a

general overview: Time Sensitive Ethernet whitepaper.6

Annex C - Elements used in the model

Hardware:

• Raspberry Pi: Small computer which hosts the Modbus

node simulator

• DS 3231 real-time clock: This is used to enforce real time

operation

• LCD 20x4: Small Liquid Cristal Display used to show the

data stored in the Raspberry Pi.

• Router: Network element used to enable the connection

between Modbus master and different slaves

• Computer: Hosting the SCADA software acting as Modbus

master

Software:

• Programming language: Python 2.7 was chosen for the

processes that enable the Modbus nodes, using Pymodbus

library .

• SCADA software: The open source licensed Indigo SCADA,

was used for the master station configuration.7

Annex D - Python code for Modbus slave node
simulation

The following code represents the usage of the Pymodbus

library, for further information on the library itself8; refer to

the library documentation and tutorials.9

#!/usr/bin/env python

‘’’

Pymodbus Asynchronous Server Examples

--

The asynchronous server is a high performance

implementation using the twisted library as its backend.

This allows it to scale to many thousands of nodes which

can be helpful for testing monitoring software.

#---#

import needed libraries

10 IoT system simulation for cyber-resilience testing Call: +44 345 222 1711 / +353 1 210 1711 Email: cyber@bsigroup.com Visit: bsigroup.com

#---#

from iker_async import StartTcpServer,ModbusTcpProtocol

from iker_async import StartUdpServer

from iker_async import StartSerialServer

from pymodbus.device import ModbusDeviceIdentification

from pymodbus.datastore import

ModbusSequentialDataBlock

from pymodbus.datastore import ModbusSlaveContext,

ModbusServerContext

from pymodbus.transaction import ModbusRtuFramer,

ModbusAsciiFramer

#---#

configure the service logging

#---#

import logging

logging.basicConfig()

log = logging.getLogger()

log.setLevel(logging.DEBUG)

#---#

initialize your data store

#---#

The datastores only respond to the addresses that they

are initialized to. Therefore, if you initialize a DataBlock to

addresses of 0x00 to 0xFF, a request to 0x100 will respond

with an invalid address exception. This is because many

devices exhibit this kind of behavior (but not all)::

#

block = ModbusSequentialDataBlock(0x00, [0]*0xff)

#

Continuing, you can choose to use a sequential or a

sparse DataBlock in your data context. The difference is that

the sequential has no gaps in the data while the sparse can.

Once again, there are devices that exhibit both forms of

behaviour::

#

block = ModbusSparseDataBlock({0x00: 0, 0x05: 1})

block = ModbusSequentialDataBlock(0x00, [0]*5)

#

#---#

store = ModbusSlaveContext(

di = ModbusSequentialDataBlock(1, [1]*5),

co = ModbusSequentialDataBlock(1, [0]*5),

hr = ModbusSequentialDataBlock(1, [7]*5),

ir = ModbusSequentialDataBlock(1, [9]*5))

context = ModbusServerContext(slaves=store, single=True)

#---#

initialize the server information

#---#

If you don’t set this or any fields, they are defaulted to empty

strings.

#---#

identity = ModbusDeviceIdentification()

identity.VendorName = ‘Pymodbus’

identity.ProductCode = ‘PM’

identity.VendorUrl = ‘http://github.com/bashwork/

pymodbus/’

identity.ProductName = ‘Pymodbus Server’

identity.ModelName = ‘Pymodbus Server’

identity.MajorMinorRevision = ‘1.0’

#---#

run the server you want

#---#

#, console=True

StartTcpServer(context, identity=identity,

address=(“localhost”, 502), console=False)

Cybersecurity and Information
Resilience services

Our Cybersecurity and Information Resilience services enable organizations to secure information from

cyber-threats, strengthening their information governance and in turn assuring resilience, mitigating

risk whilst safeguarding them against vulnerabilities in their critical infrastructure.

We can help organizations solve their information challenges through a combination of:

Research
Commercial research and

horizon scanning projects

Consulting
Cybersecurity and information

resilience strategy, security

testing, and specialist support

Training
Specialist training to support

personal development

Technical solutions
Managed cloud solutions to

support your organization

Our expertise is supported by:

Find out more
Call UK: +44 345 222 1711

Call IE: +353 1 210 1711
 Visit: bsigroup.com

