
#### Eurocode Update

#### Transitioning to Eurocodes Developing Generation 2 Eurocodes





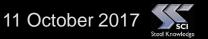
## Overview

- Introduction
- Looking back: Transition to Eurocodes
- Looking forward: Generation 2 Eurocodes

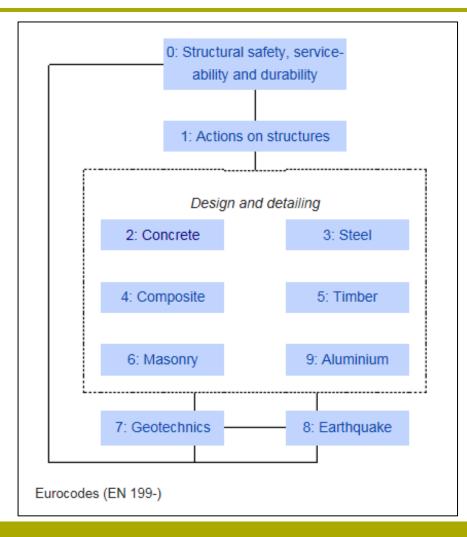




## 25 years with the Eurocodes


- 1986: graduated
- 1988: joined SCI
- 1992:tested usability of Eurocode 3
- 1993: lectured 'Intro to Eurocode 3' course
- 1994 2017: prepared design tables, software, design guides, CAL, examples etc
- 2011 2017: membership of WGs responsible for drafting Generation 2 Eurocodes






- Eliminate technical obstacles to trade
- Set of harmonized technical for structural design of construction works in the EU
- 10 standards and 58 parts (20 for steel!)
- All conflicting national building codes withdrawn
- Most comprehensive and technically advanced suite of standards for structural and geotechnical design in the world

Largest, longest-lasting and most complex code development effort in the world (40+ years, several 100 M €)

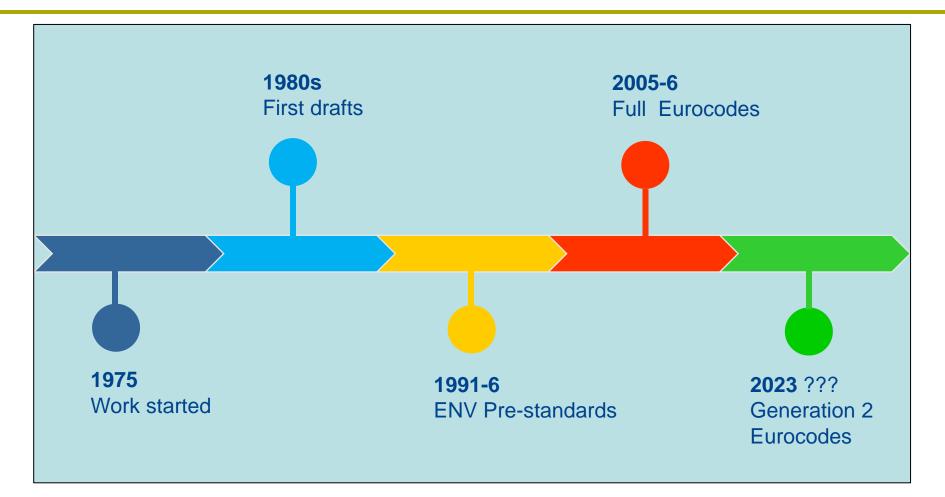


#### **Overview of Eurocodes**



Integrated and consistent suite of structural design codes covering all common construction materials




| EN                                          | Part | Title                                                                              |  |
|---------------------------------------------|------|------------------------------------------------------------------------------------|--|
| EN 1990                                     |      | (includes ANNEX A1 : Application for buildings)                                    |  |
| Basis of structural<br>design               | A1   | ANNEX A2: Application for bridges                                                  |  |
| EN 1991<br>Actions on<br>structures         | 1-1  | General actions - Densities, self-weight, imposed loads<br>for buildings           |  |
|                                             | 1-2  | General actions - Actions on structures exposed to fire                            |  |
|                                             | 1-3  | General actions - Snow loads                                                       |  |
|                                             | 1-4  | General actions - Wind actions                                                     |  |
|                                             | 1-5  | General actions - Thermal actions                                                  |  |
|                                             | 1-6  | General actions - Actions during execution                                         |  |
|                                             | 1-7  | General actions - Accidental actions                                               |  |
|                                             | 2    | Traffic loads on bridges                                                           |  |
|                                             | 3    | Actions induced by cranes and machinery                                            |  |
|                                             | 4    | Silos and tanks                                                                    |  |
| EN 1992<br>Design of concrete<br>structures | 1-1  | General rules and rules for buildings                                              |  |
|                                             | 1-2  | General rules - Structural fire design                                             |  |
|                                             | 2    | Concrete bridges - Design and detailing rules                                      |  |
|                                             | 3    | Liquid retaining and containment structures                                        |  |
|                                             | 1-1  | General rules and rules for buildings                                              |  |
|                                             | 1-2  | General rules - Structural fire design                                             |  |
|                                             | 1-3  | General rules - Supplementary rules for cold-formed<br>members and sheeting        |  |
|                                             | 1-4  | General rules - Supplementary rules for stainless steels                           |  |
|                                             | 1-5  | General rules - Plated structural elements                                         |  |
|                                             | 1-6  | Strength and stability of shell structures                                         |  |
|                                             | 1-7  | Strength and stability of planar plated structures subject to out of plane loading |  |
| EN 4002                                     | 1-8  | Design of joints                                                                   |  |
| EN 1993<br>Design of steel                  | 1-9  | Fatigue                                                                            |  |
| structures                                  | 1-10 | Material toughness and through-thickness properties                                |  |
|                                             | 1-11 | Design of structures with tension components                                       |  |
|                                             | 1-12 | General - High strength steels                                                     |  |
|                                             | 2    | Steel bridges                                                                      |  |
|                                             | 3-1  | Towers, masts and chimneys – Towers and masts                                      |  |
|                                             | 3-2  | Towers, masts and chimneys – Chimneys                                              |  |
|                                             | 4-1  | Silos                                                                              |  |
|                                             | 4-2  | Tanks                                                                              |  |
|                                             | 4-3  | Pipelines                                                                          |  |
|                                             | 5    | Piling                                                                             |  |
|                                             | 6    | Crane supporting structures                                                        |  |
| EN 1994                                     | 1-1  | General rules and rules for buildings                                              |  |
| Design of composite                         | 1-2  | General rules - Structural fire design                                             |  |
| steel and concrete<br>structures            |      |                                                                                    |  |

| EN                                                              | Part | Title                                                                     |  |  |
|-----------------------------------------------------------------|------|---------------------------------------------------------------------------|--|--|
| EN 1995<br>Design of timber<br>structures                       | 1-1  | General - Common rules and rules for buildings                            |  |  |
|                                                                 | 1-2  | General - Structural fire design                                          |  |  |
|                                                                 | 2    | Bridges                                                                   |  |  |
| EN 1996<br>Design of masonry<br>structures                      | 1-1  | General rules for reinforced and unreinforced masonry structures          |  |  |
|                                                                 | 1-2  | General rules - Structural fire design                                    |  |  |
|                                                                 | 2    | Design considerations, selection of materials and<br>execution of masonry |  |  |
|                                                                 | 3    | Simplified calculation methods for unreinforced<br>masonry structures     |  |  |
| EN 1997                                                         | 1    | General rules                                                             |  |  |
| Geotechnical design                                             | 2    | Ground investigation and testing                                          |  |  |
| EN 1998<br>Design of structures<br>for earthquake<br>resistance | 1    | General rules, seismic actions and rules for buildings                    |  |  |
|                                                                 | 2    | Bridges                                                                   |  |  |
|                                                                 | 3    | Assessment and retrofitting of buildings                                  |  |  |
|                                                                 | 4    | Silos, tanks and pipelines                                                |  |  |
|                                                                 | 5    | Foundations, retaining structures and geotechnical<br>aspects             |  |  |
|                                                                 | 6    | Towers, masts and chimneys                                                |  |  |
| EN 1999<br>Design of aluminium<br>structures                    | 1-1  | General structural rules                                                  |  |  |
|                                                                 | 1-2  | Structural fire design                                                    |  |  |
|                                                                 | 1-3  | Structures susceptible to fatigue                                         |  |  |
|                                                                 | 1-4  | Cold-formed structural sheeting                                           |  |  |
|                                                                 | 1-5  | Shell structures                                                          |  |  |

#### Part 1-2: Structural fire design

#### Part 2: Bridges

## Eurocode Timeline





# State of implementation of Eurocodes: JRC Report 2015

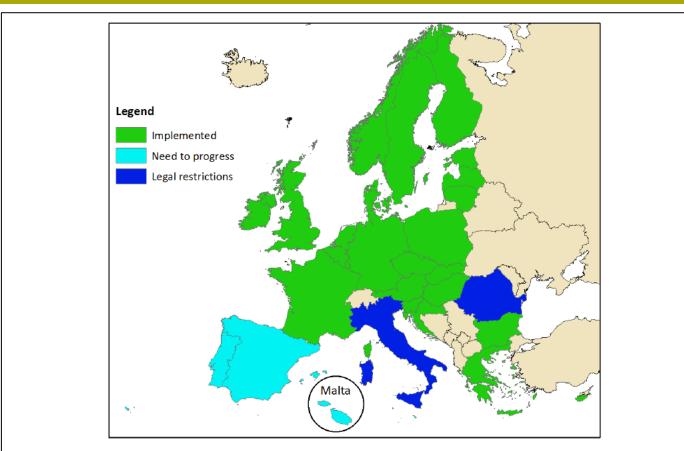
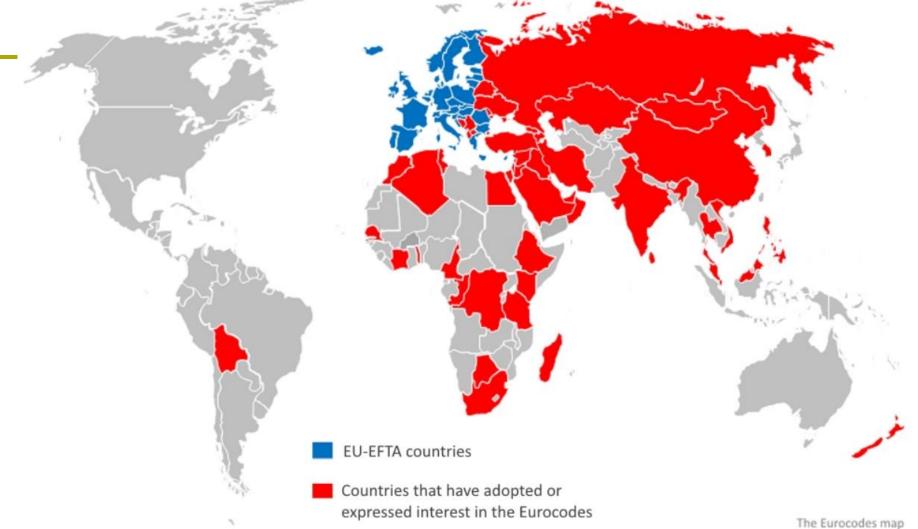
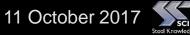
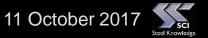




Figure 6.2. State of implementation of the Eurocodes in the EU Member States and Norway


In 83% of the analysed countries the Eurocodes are implemented. Malta, Portugal and Spain should speed the progress in adoption of National Annexes. Italy and Romania should remove the legal restrictions impeding the implementation of the Eurocodes.



#### Where are the Eurocodes being used?



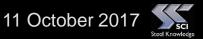

© European Union, 2017. Reuse is authorised, provided the source is acknowledged



#### Fort York Pedestrian Bridges, Toronto



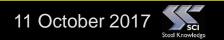



### **Transition to Eurocodes**

What designers find difficult

- Names and symbols
- Finding things
- Dispersion of information between different parts
- Complexity

| Eurocode 3                  |  |  |  |  |
|-----------------------------|--|--|--|--|
| Larger firms have made      |  |  |  |  |
| the transition, but smaller |  |  |  |  |
| firms are still using BS    |  |  |  |  |


| Fabricator   | BS  | Eurocode |
|--------------|-----|----------|
| Medium sized | 50% | 50%      |
| Large        | 10% | 90%      |
| Very large   | 0   | 100%     |



#### **Transition to Eurocodes**

# Helping designers use the stainless Eurocode





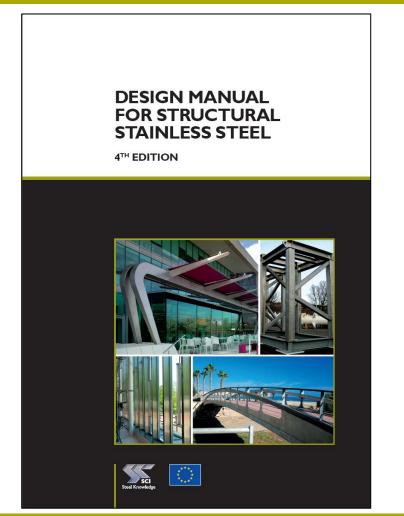
# PUREST: Promotion of new Eurocode rules for stainless steel

- 18 month project, finishing Dec 2017
- 12 partners from 10 European countries

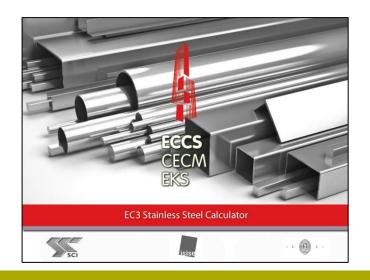






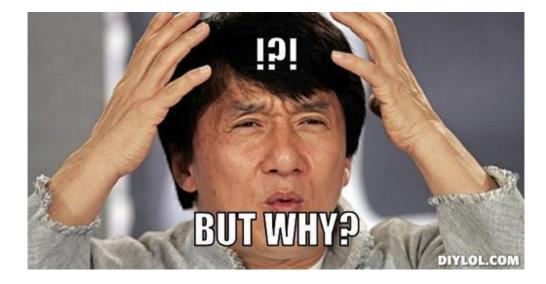

# **Objectives of PUREST**

To disseminate new design guidance for structural stainless steel developed over the last 10 years:


- 4<sup>th</sup> Ed. Design Manual for Structural Stainless Steel,
- Translating the Design Manual into 9 languages,
- Design software and apps in accordance with the stainless Eurocode rules,
- National seminars and recorded webinars
- Developing teaching resources for engineering students.
- Articles in national engineering journals



#### **Design Manual for Structural Stainless Steel**




- Recommendations
- Design Examples
- Commentary
- Software and apps





#### **Generation 2 Eurocodes**





# Generation 2 Eurocodes

- More designer orientated
- Easier to use
  - improving clarity
  - simplifying routes through the Eurocodes
  - limiting alternative application rules
  - removing rules of little practical use
- Including state-of the-art material, based on commonly accepted results of research and validated through sufficient practical experience

Generation 2 Eurocodes are an "evolution" avoiding fundamental changes to the approach to design unless adequately justified



## Systematic Review

- Do any clauses require editorial or technical correction?
- Which clauses would benefit from improvements in clarity?
- Where should the scope of the EN be extended?
- Where could the EN be shortened?
- Are there any clauses whose application leads to uneconomic construction?
- Are there any clauses whose application necessitates excessive design effort?



### Who are the main user groups?

Final list of target audiences

Practitioners - Competent engineers

Practitioners - Graduates

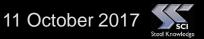
Expert specialists

Clients

Private sectors businesses

Product Manufacturers

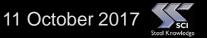
Other CEN/TCs


National Regulators

Educators

Software Developers

Range of needs, interests, expectations and capabilities of Eurocode users


Competent civil, structural and geotechnical engineers, typically qualified professions able to work independently in relevant fields

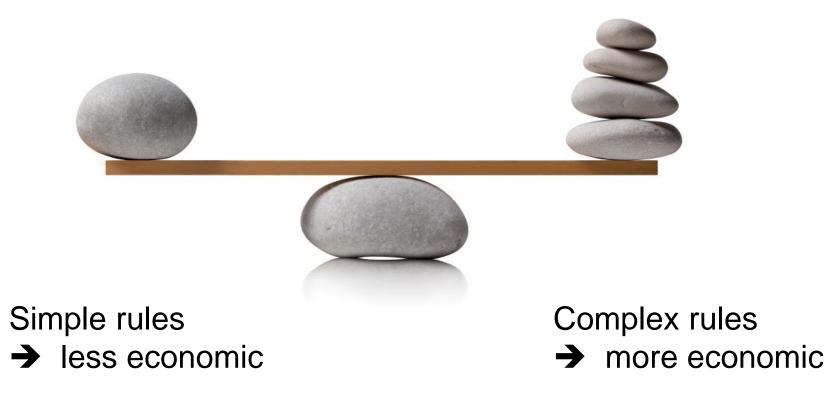


# Generation 2 Structural Stainless Steel Eurocode EN 1993-1-4

#### EN 1993-1-4 Structural stainless steel


- First design code for structural stainless steel in all European countries except Germany
- Most comprehensive design code in world
- Used in development of US design guidance and Chinese design standard
- Re-wording ambiguous clauses
- Correcting errors
- Filling important gaps
- Introduce less conservative design method




# Generation 2 Eurocodes: Technical committee work

In addition to design experience and state-of-theart structural expertise in relevant field:

- Diplomacy (different cultures, languages, construction traditions across Europe)
- Patience and perseverance
- Willingness to compromise
- Significant time investment



#### Development of design rules in Generation 2 Eurocodes



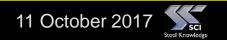
Not 'simple rules sell steel' but 'simple tools sell steel'



## **Generation 2 Eurocodes**

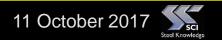
New Eurocodes to look out for:

- Structural glass
- Fibre reinforced polymer
- Tensile membrane structures
- Assessment and retrofit of existing structures

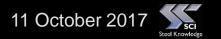



#### How will we move from G1 to G2 Eurocodes

No-one knows!


Perhaps.....

..... all parts issued together and have a transition period when you can use either G1 or G2 Eurocode, during this period design tools can be updated




## Summary

- Eurocodes are not perfect
- Substantial transition to Eurocodes over the last 10 years
- Design tools are widely available
- Generation 2 Eurocodes will be 'better'



#### Thank you!

