Eurocodes – the need for evolution A view from a user

Chris Hendy Head of Bridge Engineering

Plan Design Enable

Eurocodes – the need for evolution Introduction

- Speaking from Atkins and industry observations
- Eurocodes are functional and bring many benefits (e.g. economy, flexibility) but improvements possible
- Some new Eurocode material needed assessment, FRP, structural glass, membrane structures
- Examples of why evolution needed

Eurocodes – the need for evolution

Purpose of Eurocodes:

- provide a common understanding regarding the design of structures between owners, operators and users, designers, contractors and manufacturers of construction products
- facilitate the exchange of construction services between countries
- facilitate the marketing and use of structural components and kits of parts in Member States
- a common basis for research and development in the construction sector
- allow the preparation of common design aids and software
- increase the competitiveness of the civil engineering firms, contractors, designers and product manufacturers in their world-wide activities
- BE READILY USABLE!

Eurocodes – the need for evolution

- New Eurocodes will aim to improve ease of use
- According to most designers, the hierarchy of priorities should be to:
 - Improve clarity and provide missing material
 - Reduce inconsistencies
 - Reduce NDPs
 - Reduce length
 - Update rules where more reliable material exist

 Clause is currently ambiguous about direction of application; "a" is usually "panel length"

BRITISH STANDARD

1993-1-5:2006 Incorporating corrigendum April 2009

BS EN

Eurocode 3 — Design of steel structures —

Part 1-5: Plated structural elements

NOTE 4: Single plate elements may be considered as flat where the curvature radius r satisfies: $r \ge \frac{a^2}{t}$ (1.1) where *a* is the panel width *t* is the plate thickness

• Caused arguments on A465 for example; needs to be fixed

NTKINS

BS EN 1993-1-5:2006 Incorporating corrigendum April 2009

Eurocode 3 — Design of steel structures —

Part 1-5: Plated structural elements

Replace NOTE 4 in clause 1.1(2) as follows:

Single plate elements may be considered as flat where the curvature radius r in the direction perpendicular to the compression satisfies:

$$r \ge \frac{b^2}{t}$$

where b is the panel width

t is the plate thickness

• Caused arguments on A465 for example; needs to be fixed

• Walton Bridge – continuously curved arch plates "not flat" to EN 1090-2

NKN

 No rules for section classification of curved panels in direction of stress or for considering additional bending
 BRITISH STANDARD
 BRITISH
 BRITIS

- Walton Bridge continuously curved arch plates "not flat" to EN 1090-2
- No rules for section classification of curved panels in direction of stress or for considering additional bending – Class 2 if flat on Walton

• Walton Bridge – continuously curved arch plates "not flat" to EN 1090-2

NTKN

- No rules for section classification of curved panels in direction of stress or for considering additional bending – Class 2 if flat on Walton
- Current option is user-developed rules backed up by non-linear analysis; needs simpler treatment as more steel becomes continuously curved in plan and elevation – showed Class 2 still on Walton with reduced effective yield stress

$$\sigma_{\rm T} = 3\sigma_{\rm eff, yd}c^2/4rt \text{ and } \left(\frac{\sigma_{\rm eff, yd}}{f_{\rm yd}}\right) + \left(\frac{\sigma_{\rm T}}{f_{\rm yd}}\right) - \left(\frac{\sigma_{\rm eff, yd}}{f_{\rm yd}}\right)\left(\frac{\sigma_{\rm T}}{f_{\rm yd}}\right) \le 1.0$$

$$\sigma_{\rm eff, yd} = 0.97f_{\rm yd}$$

$$a) \text{ Radial force from curved flange}$$

 Practical cases not always covered e.g. calculating crack widths in slabs

WO1 – HF – Conventional Island Electrical Building

WO3 – HM – Turbine Hall

- Practical cases not always covered e.g. calculating crack widths in slabs
- Crack width expression given and crack spacing formula given, but no expression for reinforcement ratio

$$w_{k} = S_{r.max}(\varepsilon_{sm} - \varepsilon_{cm})$$

$$S_{r,max} = \frac{1}{\frac{\cos \theta}{S_{r,max,y}} + \frac{\sin \theta}{S_{r,max,z}}}$$

$$(\varepsilon_{sm} - \varepsilon_{cm}) = \frac{\sigma_{s} - k_{t} \cdot \frac{f_{ct.eff}}{\rho_{p.eff}}(1 + \alpha_{e} \cdot \rho_{p.eff})}{E_{s}} \ge 0.6 \frac{\sigma_{s}}{E_{s}}$$

$$A_{n} = \sum_{i=1}^{N} A_{i} \cos^{4} \alpha_{i}$$
Requirement for efficient ratio needed

• Sometimes just improved writing of clauses would help e.g. rules for RC detailing in EN 1992-1-1 and laps in particular

Eurocodes – the need for evolution Reduce inconsistencies BRITISH STANDARD BS EN 1993-1-5:2006 • There are currently two approaches to

105 91.010.30; 91.000.10

NO COPPENS WITHOUT BEI PERMISSION EXCEPT AS PERMITTED BY COPPENSIT LAW

Eurocodes – the need for evolution **Reduce** inconsistencies

NTKINS The effective area method of EN 1993-1-5 clause 4 does not cover biaxial stress in plates but allows redistribution of stress around the cross-section

Eurocodes – the need for evolution Reduce inconsistencies

Clause 10:

- Clause 10 allows no redistribution between panels and shear has to be considered in panel buckling - very conservative
- (Unsafe for biaxial compression until latest amendment made)
- Clause 4:
 - Need to amend clause 4 to include σ_2- to avoid individual designers making it up
- Current two possible methods has led to arguments between designers, checkers and clients

Eurocodes – the need for evolution

Reduce inconsistencies

- Eurocode 2 allows :
- **NTKINS** - Member rules for bending, shear and torsion
 - Strut and tie rules
 - Sandwich model rules
- The rules can give quite different results e.g.:
 - Axial force increases shear resistance in member rules and reduces it with sandwich modelling
- Strut and tie rules (and member rules) make no reduction to limiting compression stress with reducing strut angle but sandwich model rules yys y_{yi}⊥zy make a large reduction
 - Problems for designers and checkers and interface between rules

Eurocodes – the need for evolution Reduce inconsistencies

- Inconsistencies between documents e.g.
 - EN1992-1-1 covers interface shear between concretes cast at different times when there is fatigue loading and so does EN1992-2; EN 1992-1-1 reduces the adhesion term while EN 1992-2 deletes it
 - Not always intuitive that one should go and check a part for a specific structure type when a rule seems to be quite adequate; one reason why EN 1994-2 reproduces all of EN 1994-1-1

Eurocodes – the need for evolution Reduce NDPs

- Too many NDPs allows national practices to depart significantly and can create more documents – restricts trade and reduces ease of use e.g.
 - Variations in partial factors relatively easy to adjust country to country but pitfalls for designers (software, relying on your memory etc)
 - Swedish NA introduces old standard's traffic models foreign designers need to learn new models and rules
 - UK NA makes significant changes to fatigue and fracture and then introduces two PDs to explain them
- Reducing NDPs however requires greater European consensus

Eurocodes – the need for evolution Reduce length

- A lot of documents, a lot of pages and a lot of crossreferences
- But reducing length is generally not wanted if it reduces clarity or increases the need for other documents; in particular, needing to refer to PDs is not generally wellreceived, even though the guidance is sometimes valued

PD 6687-2:2008	PD 6687-2:2008	Figure 4 Reinforcement $\sum A_{yw}$ to include in punching check
PUBLISHED DOCUMENT	7.3 Punching [BS EN 1992-1-1:2004, 6.4] 7.3.1 Distribution of shear with eccentric support reaction The expressions for W ₁ in SE EN 1992-1-1:2004, 6.4.3 are derived for the basic perimeter, u _i , at a distance 2 from the bad. Theoretically, they need adjustment for other perimeters at a distance r, from the load. However, these expressions for W ₁ may be used for perimeters inside the basic perimeter at 22, except in the design of bases in accordance	
the design of structures to BS EN 1992-2:2005	with B5 EN 1992-1-1:2004, 6.4.4, because the punching rules were calibrated against test biologi W0, on the up perimeter. For the design of bases in accordance with B5 EN 1992-1-1:2004, 6.4.4, the expression for W1 have to be modified for the actual perimeter before being used in B5 EN 1992-1-1:2004, Expression (6.40) if follows that for a general perimeter 4 v, with length a, the anightflee agreement B5 EN 1992-1-1:2004, Expression (6.41) and (6.42) need adjustment as follows: For a square column and a general perimeter at ν ₁ with length u ₁	
	$W_1 = \frac{g^2}{2} + c_1c_2 + 2c_2\eta + 4\eta^2 + \pi\eta c_1$ For an internal circular column and a general perimeter at v_1 with length w_i : $\beta = 1 + 0.6 \pi \frac{\sigma}{f_2 + 2\pi}$	Key 14, is between 14, and 14, as
	7.3.2 Distribution of shear reinforcement [BS EN 1992-1.1:2004, 6.4.3] BS EN 1992-1.1:2004, 5.4.3] BS EN 1992-1.1:2004, 5.4.3] a constant area of shear instructures on each perimeter moving away from the loaded area as above in BS EN 1992-1.1:2004, Figure 6.22. In cases where the readirestimate area values on succeasive perimeters the successive perimeters as, between the basic control perimeter at 2d and the perimeter structure that have reinforcement of area 2.4 _w saturities the following expression:	1 Reinforcement La _m to include for check on perimeter u; 7.4 Design with strut and tie models [BS EN 1992-1-1:2004, 6.5.2] 7.4.1 Struts [BS EN 1992-1-1:2004, 6.5.2] The compressive status and a concrete strut can carry is strongly affected by its multi-axial state of structs. Therefore the two simplified and conservat beneficial while transverse tension reduces the concrete strut's
BITISH Standards No copying without bij permission except as premitted by copyright law	$\begin{split} \sum A_{ww} &= \left(\frac{ v_{W}-0.5v_{W,W} w_{V} }{p_{W}et}d^{300}\right) \\ \text{where } \sum A_{w} \text{ is the total alware reinforcement, shown in Figure 4, placed within an areas enclosed between the control perimeter, w_{v} chosen and one 35 minute k, except that abart reinforcement within a dustance of 0.3 of from the mater perimeter and 0.22 minute k, and 0.20 m$	The imit given in Sor is 1952-11 (2004, 6).3.2. The imit given in Sor IN 1952-1-1 (2004, Expression (6.56) relatest acfe lower bound stress that can be assumed for all compression are provided that the struth and tie idealisation does not depart significan from elastic stress trajectories. It is the same limit for strut compres- stress used in the calculation of "gamma." This limit does not distings between cracking running parallel to the strut and the more detrime cracking skew to the strut, or between applied transverse tensile for that are carried by reinforcement and those which arise purely from elastic bulging of the struth softween modes. Further, if does not accord for the actual magnitude of tensile strain, which is also relevant.

Add the following clause in Chapter 7

- 7.3. Interaction between transverse force, bending moment and shear force
- (1) If the girder is subjected to a concentrated transverse force acting on the compression flange in conjunction with bending moment and shear force, the resistance should be verified using 4.6, 5.5, 6.6 and the following interaction expression:

$$\overline{\eta_1}^{3.6} + \left[\overline{\eta_3} \cdot \left(1 - \frac{F_{Ed}}{2 \cdot V_{Ed}}\right)\right]^{1.6} + \eta_2 \leq 1.0$$
where: $\overline{\eta_1} = \frac{M_{Ed}}{M_{pl,Rd}}$

$$\overline{\eta_3} = \frac{V_{Ed}}{V_{bw,Rd}}$$

F-M-V interaction is not covered in EN 1993-1-5

- Important for bridge launches and cantilevers
- Needs addition for safety

 Some researchers have suggested that the current formulation for M-V is the But it seems that BS EN BRITISH STANDARD 1993-1-5:2006 Incorporating corrigendum April 2009 Eurocode 3 — Design of steel structures certain geometries, if any Part 1-5: Plated structural elements 7.1 Interaction between shear force, bending moment and axial force Provided that η_3 (see below) does not exceed 0.5, the design resistance to bending moment and axial (1)force need not be reduced to allow for the shear force. If η_3 is more than 0,5 the combined effects of bending and shear in the web of an I or box girder should satisfy: $\overline{\eta}_1 + \left(1 - \frac{M_{f,Rd}}{M_{pl,Rd}}\right) \left(2\overline{\eta}_3 - 1\right)^2 \le 1,0 \quad \text{for } \overline{\eta}_1 \ge \frac{M_{f,Rd}}{M_{pl,Rd}}$ (7.1)where M_{LRd} is the design plastic moment of resistance of the section consisting of the effective area of the flanges; $M_{\rm pLRd}$ is the design plastic resistance of the cross section consisting of the effective area of the flanges and the fully effective web irrespective of its section class. $\overline{\eta}_1 = \frac{M_{Ed}}{M_{el} Rd}$ $\overline{\eta}_3 = \frac{V_{Ed}}{V_{ed}}$ for $V_{bw,Rd}$ see expression (5.2). (46) 105 91 910 30 91 990 10

NO COPYING WITHOUT INSPECTION EXCEPT AS PERMITTED BY COPYEIGHT LAW

Eurocodes – the need for evolution Changing formulae for safety Thelwall Viaduct

- Bearing problems identified at a routine inspection
- Replacement project initiated which required overall structural assessment

NKN

Thelwall Viaduct

- First necessary to strengthen the bridge with jacking stiffeners
- This work revealed that, according to UK design codes, the plate girders were understrength in bending and shear by up to 40%
- Consequently, non-linear analysis
 undertaken

NKN

Eurocodes – the need for evolution

Changing formulae for safety

Thelwall Viaduct

- Different M-V ratios investigated
- All strengths were found to be greater than the envelope predicted by Eurocode 3
- Interaction between shear and moment was weak
- Moment resistance actually increased by the presence of small amounts of shear
- Typical M-V action effect

Recent research has shown that the interaction is not conservative for some M_f/M_{el} ; wholesale change proposed for this case which will impact on economy of all bridges

Eurocodes – the need for evolution Summary

- New Eurocodes will aim to improve ease of use:
 - Improve clarity and provide missing material prevent mistakes, alternative interpretations and proliferation of additional national documents
 - Reduce inconsistencies as above
 - Reduce NDPs make it easier to work across countries, limit preferential engineering and increased documentation
 - Reduce length not at expense of needing more guidance documents
 - Update rules where more reliable material exists only for safety
- Evolution not revolution; wholesale change to methods and formulae would:
 - Cause extensive rework of design guides and software
 - Require re-education of designers
 - Create situations where recently designed structures are no longer "adequate"