Guide to fatigue design and assessment of steel products
Publishing and copyright information

The BSI copyright notice displayed in this document indicates when the document was last issued.

© The British Standards Institution 2015
Published by BSI Standards Limited 2015
ISBN 978 0 580 91540 6
ICS 91.080.10

The following BSI references relate to the work on this document:
Committee reference WEE/37
Drafts for comment 13/30102062 DC; 15/30329661 DC

Publication history
First edition April 1993
Second (present) edition March 2014

Amendments issued since publication

<table>
<thead>
<tr>
<th>Date</th>
<th>Text affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2015</td>
<td>See Foreword for details.</td>
</tr>
</tbody>
</table>
Contents
Foreword iv
1 Scope 1
2 Normative references 2
3 Terms and definitions 3
4 Symbols and units 6
5 Fatigue assessment procedure 8
6 Design life 9
7 Fatigue loading 9
8 Environmental considerations 10
9 Factors on fatigue life 11
10 Features influencing fatigue behaviour 11
11 Fracture mechanics 12
12 Classification of details 12
13 Unclassified details 32
14 Workmanship and Inspection 32
15 Stress calculations 42
16 Allowable fatigue stresses 53

Annexes
Annex A (normative) Fatigue design 69
Annex B (normative) Explanatory notes on detail classification 71
Annex C (normative) Guidance on stress analysis 83
Annex D (normative) Guidance on the use of fracture mechanics 108
Annex E (normative) Fatigue testing and the use of test data to define design stresses 117
Annex F (normative) Weld toe improvement techniques 120
Annex G (normative) Assessment of tubular node joints 131
Annex H (normative) Cycle counting by the reservoir method 137

Bibliography 139

List of figures
Figure 1 – Definition of length L for use in thickness-bending correction 8
Figure 2 – Reference stress in parent metal 43
Figure 3 – Reference stress on weld throat 45
Figure 4 – Typical example of stress concentrations due to geometrical discontinuity 47
Figure 5 – Typical example of stress concentration caused by a geometric hard spot 48
Figure 6 – Fatigue stress concentration factors 49
Figure 7 – Comparison of nominal, structural and hot-spot stresses in a beam with a welded cover plate 50
Figure 8 – Relative stiffness effects on the fluctuating load in a bolt in a concentrically clamped and concentrically loaded bolted joint 52
Figure 9 – Mean S_N curves 54
Figure 10 – Standard basic design S_N curves 56
Figure 11 – S_N curves for bolts with threads under direct loading (class X) 58
Figure 12 – Modifications made to S_N curves for welded joints in sea water 63
Figure 13 – Typical S_N relationship 64
Figure B.1 – Welds at plate edges 72
Figure B.2 – Failure modes at weld ends and weld toes of welded attachments 73
Figure B.3 – Failure modes in cruciform and T-joints for joint types indicated 74
Figure B.4 – Failure modes in transverse butt welds for joint types indicated 74
Figure B.5 – T-junction of two flange plates 76
Figure B.6 – Cruciform junction between flange plates 77
Figure B.7 – Alternative method for joining two flange plates 77
Figure B.8 – Local grinding adjacent to cope hole in type 6.2 joint 78

© The British Standards Institution 2015 • I
Figure B.9 – Use of continuity plating to reduce stress concentrations in type 7.1 and 7.2 joints 80
Figure B.10 – Example of type 7.3 or 7.4 T-joint 81
Figure B.11 – Single fillet corner weld in bending (type 7.9) 81
Figure B.12 – Example of a third member slotted through a main member 82
Figure C.1 – I beam with cover plate showing distribution of structural stress and definition of hot-spot stress 85
Figure C.2 – Types of hot-spot 87
Figure C.3 – Possible brick element model of an I beam with a cover plate 88
Figure C.4 – Node numbers superimposed upon the weld mesh section in Figure C.3c 89
Figure C.5 – Node numbers superimposed upon the weld mesh section in Figure C.3e 89
Figure C.6 – Element numbers superimposed upon the weld mesh section in Figure C.3c 90
Figure C.7 – Element numbers superimposed upon the weld mesh section in Figure C.3e 90
Figure C.8 – Calculation of the SSE stress at node n2 of the brick mesh shown in Figure C.3 to Figure C.5 91
Figure C.9 – Possible shell element model of an I beam with a cover plate 92
Figure C.10 – Node numbers superimposed upon the shell element weld mesh section in Figure C.9c 93
Figure C.11 – Node numbers superimposed upon the shell element weld mesh section in Figure C.9f 93
Figure C.12 – Element numbers superimposed upon the shell element weld mesh section in Figure C.9c and d) 94
Figure C.13 – Element numbers superimposed upon the shell element weld mesh section in Figure C.9f 94
Figure C.14 – Calculation of the SSE stress at node n2 of the shell mesh shown in Figure C.9 to Figure C.12 95
Figure C.15 – Stress distributions across sections of an I-beam with a cover plate 96
Figure C.16 – Region of TTI or NF integration for an edge attachment 97
Figure C.17 – Stress distribution through I beam flange underneath node n2 for solid mesh shown in Figure C.4, Figure C.5 and Figure C.7 97
Figure C.18 – Distribution of correctly averaged stresses plotted against distance y 98
Figure C.19 – Distribution of correctly averaged nodal forces plotted against distance y 101
Figure C.20 – Brick element mesh with definition of weld toe element size (f) and plate thickness (t) 102
Figure C.21 – Brick element model of an I beam showing the region of connection between the connectivity representing the joining surface (shaded) to a cover plate when the weld overfill is not modelled 102
Figure C.22 – Dimensions used for inclined element representation of a fillet weld 103
Figure C.23 – Dimensions used for thicker element representation of a fillet weld 104
Figure C.24 – Example of symmetrical welded joint for which hot-spot stress is underestimated using methods in this annex 106
Figure C.25 – Types of misalignment and distortion 107
Figure D.1 – Flaw dimensions 110
Figure D.2 – Transverse load-carrying cruciform joint 111
Figure D.3 – Crack opening modes 112
Figure F.1 – Multi-run weld in tubular nodal joint requiring improvement of every weld toe 121
Figure F.2 – Recommendations for weld toe grinding 123
Figure F.3 – Toe grinding to improve fatigue strength 123
Figure F.4 – Effect of TIG or plasma torch position on resulting weld profile 124
Figure F.5 – Modification to design S-N curve for untreated weld resulting from weld toe dressing 125
Figure F.6 – Weld toe peening methods 126
Figure F.7 – Weld toe peening 127
Figure F.8 – Modification to design S-N curve for untreated weld resulting from weld toe peening 131
Figure G.1 – Example of hot-spot stresses in a tubular node joint 132
Figure G.2 – Locations A and B of stresses used for linear extrapolation to weld toes to determine hot-spot stresses in tubular joints 135
Figure H.1 – Example of cycle counting by reservoir method 137

List of tables
Table 1 – Classification of details: plain material free from welding 14
Table 2 – Classification of details: bolted and riveted connections 15
Table 3 – Classification of details: butt welds and continuous welded attachments essentially parallel to the direction of applied stress 16
Table 4 – Classification of details: welded attachments on the surface or edge of a stressed member 18
Table 5 – Classification of details: full penetration butt welds between co-planar plates 20
Table 6 – Classification of details: transverse butt welds in sections, tubes and pipes 22
Table 7 – Classification of details: load carrying fillet and T-butt joints between plates 25
Table 8 – Classification of details: slotted connections and penetrations through stressed members 28
Table 9 – Classification of details: circular tubular members 29
Table 10 – Classification of details: branch connections in pressurized containers 31
Table 11 – Guidance on non-destructive testing of planar imperfections in welds 39
Table 12 – Fatigue based acceptance levels for embedded non-planar imperfections in butt welds 40
Table 13 – Fatigue based acceptance levels for undercut in transversely stressed welds 40
Table 14 – Effect of misalignment on the fatigue strength of transverse butt welded joints 41
Table 15 – Effect of misalignment on the fatigue strength of cruciform welded joints 41
Table 16 – Effect of misalignment on the fatigue strength of transverse butt or cruciform welded joints being assessed in terms of hot-spot stress 41
Table 17 – Stresses used in fatigue assessments involving applied shear stresses 42
Table 18 – Details of basic S-N curves 59
Table 19 – Nominal probability factors 60
Table 20 – Details of design S-N curves for steel in sea water 62
Table 21 – Design S-N curves for weld toe improved welded joints 65
Table C.1 – The performance of structural stress calculation procedures SSE, TTI and NF for assessing hot-spot type “a” weld toes or ends 108
Table D.1 – Use of stress intensity corrections with nominal or hot-spot stress 116
Table E.1 – Fatigue test factor, F 120
Table F.1 – Summary of weld toe peening methods 129
Table F.2 – Improvement in fatigue strength due to weld toe peening 130

Summary of pages
This document comprises a front cover, an inside front cover, pages i to vi, pages 1 to 142, an inside back cover and a back cover.
Foreword

Publishing information
This British Standard is published by BSI Standards Limited, under licence from
The British Standards Institution, and came into effect on 31 March 2014. It was
prepared by Technical Committee WEE/37, Acceptance levels for flaws in welds.
A list of organizations represented on this committee can be obtained on
request to its secretary.

Supersession

Information about this document
Guidance on general fatigue design philosophy is given in Annex A, which also
contains a brief description of the method of using this British Standard. A more
general method for assessing welded joints using the hot-spot stress, only
included previously for assessing tubular joints, is also included.

The relevant application standard or specification for the particular product
being assessed specifies the following:
a) the loading to be assumed for design purposes, including its magnitude and
frequency;
b) the required life of the structure;
c) the environmental conditions;
d) the required nominal probability of failure.

BS 7608:2014 was a full revision of the standard, and introduced the following
principal changes [1]:
• Introduction of the hot-spot stress method with guidance on finite element
stress analysis (FEA).
• New correction for both plate thickness and applied bending with
allowance for welded joint proportions.
• Additional weld details; some have been reclassified.
• Weld quality requirements based on fitness for purpose.
• Revised sea water corrosion fatigue data.
• New rules for bolts.
• Design data to resist shear fatigue failure.
• Guidance on stress calculation for combined loading.
• Revised cumulative damage rules.
• Comprehensive guidance on use of weld toe improvement methods.
• New guidance on acceptance fatigue testing and statistical analysis of
results.

European standards containing fatigue rules for steel structures and pressure
vessels have been published since the 1993 edition of this British Standard. It is
therefore not applicable to product areas covered by them. It is applicable to a
wide range of other steel product areas that do not have specific fatigue rules.

Text introduced or altered by Amendment No. 1 is indicated in the text by
tags [A] [A]. Minor editorial changes are not tagged. The principal changes are
to Table 4 to Table 10, Clause 14, Clause 16, Table 18, new Table 21, Annex C
and Annex F.
Use of this document
As a guide, this British Standard takes the form of guidance and recommendations. It should not be quoted as if it were a specification or a code of practice and claims of compliance cannot be made to it.

Presentational conventions
The guidance in this standard is presented in roman (i.e. upright) type. Any recommendations are expressed in sentences in which the principal auxiliary verb is “should”.

Commentary, explanation and general informative material is presented in smaller italic type, and does not constitute a normative element.

Contractual and legal considerations
This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.
1 Scope

1.1 General

This British Standard gives methods for assessing the fatigue life of parts of steel products that are subject to repeated fluctuations of stress. It is applicable to all areas of industrial application that are not covered by other British Standards containing fatigue assessment rules.

NOTE Some British Standards have specific product acceptance tests for fatigue life, but do not have assessment rules. In such cases the guidance in this British Standard might be applicable for product development purposes.

1.2 Applications not covered

This British Standard is not applicable to the following application areas;

a) lighting columns (see BS EN 40);
b) concrete building and civil engineering structures (see BS EN 1992);
c) steel building and civil engineering structures [see BS EN 1993 (all parts)];
d) composite steel and concrete building and civil engineering structures [see BS EN 1994 (all parts)];
e) unfired pressure vessels (see BS EN 13445); and
f) fixed offshore structures (see BS EN ISO 19903).

1.3 Materials

This British Standard covers:

a) wrought steel material products;
b) welds in fully machined areas of steel casting;
c) ferritic alloy and low alloy steels;
d) austenitic and duplex stainless steels;
e) unprotected weathering steels; and
f) threaded fasteners.

It is applicable to yield strengths in the range 200 N/mm² to 960 N/mm² and ultimate tensile strengths in the range 360 to 1 200 N/mm² for material thicknesses 3 mm and greater.

This British Standard is not applicable to the following:

1) proprietary fasteners;
2) steel castings;
3) cold drawn products;
4) wire ropes; and
5) steel for reinforcement in concrete.

1.4 Manufacturing processes

This British Standard is applicable to machined products with the following exceptions:

a) rough sawn surfaces;
b) surfaces requiring high quality surface finish (e.g. lapping, polishing, honing, fine grinding); and